S510


(An explanation of this table appears at the bottom of this page.)

ell m11m22m33m44m55m12m13m23m14m24m34m15m25m35m45 cusp:term terms dimM150(ell) #rels
4 2 2 2 2 2 0 0 0 1 0 0 1 1 1 0 1/0: q10/1 38 26 12 1/1: q20/4 1/2: q5/1
4 2 2 2 2 3 0 0 0 0 0 0 1 1 1 1 1/0: q11/1 36 26 10 1/1: q15/4 1/2: q7/1
4 2 2 4 4 4 0 0 0 0 0 0 1 1 2 2 1/0: q13/1 33 26 7 1/1: q12/4 1/2: q5/1
6 2 2 2 2 2 0 0 0 1 1 0 0 1 1 0 1/0: q10/1 78 51 27 1/1: q27/6 1/2: q21/3 1/3: q16/2
6 2 2 2 3 3 1 1 0 0 1 0 0 1 0 0 1/0: q12/1 67 51 16 1/1: q20/6 1/2: q13/3 1/3: q18/2
8 2 2 2 2 4 0 0 0 0 0 0 1 1 1 1 1/0: q12/1 62 51 11 1/1: q25/8 1/2: q11/2 1/4: q10/1
8 2 2 2 4 4 1 1 0 1 0 0 1 0 0 2 1/0: q13/1 66 51 15 1/1: q23/8 1/2: q16/2 1/4: q10/1
8 2 2 4 6 6 0 0 0 1 1 2 1 1 -2 0 1/0: q17/1 56 51 5 1/1: q17/8 1/2: q8/2 1/4: q10/1
NUMBER OF RESTRICTION MAPS: 8 TOTAL RELS: 103
Including 34 Witt-Erohkin relations, total relations: 137.
Total independent relations: 93.
The net set of coefficients has size 135, and the goal set has size 54. These relations eliminate down to 54 independent relations on the goal set. This implies the kernel of S510 under the Witt-Erohkin map has dimension at most 0. Because the image of the Witt-Erohkin map is 0-dimensional, this implies that dim S510 = 0.