Coefficients in Computations of S68
The following table gives the list of coefficients used in the
computations (Restriction to Modular Curves Method)
of spaces of modular cusp forms in degree 6
of weight 8.
-
The first column is just an index to enumerate these forms.
-
The second column DT gives the dyadic trace.
-
The third column gives 64 times the determinant.
-
The next 15 columns give twice the entries
of the half-integral integer-valued forms,
in the order m11 m22 m33 m44 m55 m66 m12 m13 m23 m14 m24 m34 m15 m25 m35 m45 m16 m26 m36 m46 m56.
-
The next 5 columns denote whether the coefficient is used in
the calculation of the space S68.
- "C" denotes that the form is in the determining set.
- "B" denotes that the form is in the net set.
- "*" indicates that this form was used in the Witt-Erohkin calculation.
-
The last column denotes if the form is Reducible.
An "R" denotes that the form is reducible.
For example, form 0 is 1/2 E5 and form 1 is 1/2 D5.
And form 3 is 1/2 A5.
Note that the forms are ordered by dyadic trace.
(All the forms of dyadic trace 4.25 or less are in this table.)
index DT 32det m11m22m33m44m55m66m12m13m23m14m24m34m15m25m35m45m16m26m36m46m56 S68 Reducible
0 2.25 3 2 2 2 2 2 2 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 C
1 3 4 2 2 2 2 2 2 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 C
2 3.25 11 2 2 2 2 2 4 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 C
3 3.5 7 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C
4 3.5 8 2 2 2 2 2 2 0 0 0 0 0 1 0 1 1 1 0 -1 1 1 0 C R
5 3.5 12 2 2 2 2 2 2 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 C R
6 3.5 15 2 2 2 2 2 4 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 C
7 3.75 27 2 2 2 2 4 4 0 1 1 1 1 1 0 1 1 1 1 1 1 1 -1 C
8 4 12 2 2 2 2 2 2 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 C R
9 4 12 2 2 2 2 2 4 0 0 1 1 1 1 1 -1 -1 0 1 0 0 1 1 C
10 4 15 2 2 2 2 2 2 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 C R
11 4 16 2 2 2 2 2 2 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 C R
12 4 16 2 2 2 2 2 2 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 C R
13 4 16 2 2 2 2 2 4 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 C
14 4 20 2 2 2 2 2 4 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 C
15 4 23 2 2 2 2 2 4 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 C
16 4 28 2 2 2 2 2 4 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 C
17 4 32 2 2 2 2 2 4 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 C
18 4 32 2 2 2 2 4 4 0 0 1 1 1 1 1 0 1 1 1 1 0 1 -1 C
19 4 48 2 2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 C
20 4 48 2 2 2 2 4 4 0 1 0 0 1 0 0 0 -1 1 1 1 0 1 2 C
21 4 64 2 2 2 2 4 4 0 0 0 0 0 0 1 1 1 1 1 1 -1 1 1 C
22 4.25 19 2 2 2 2 2 6 1 0 -1 0 -1 1 1 0 1 1 1 0 1 1 1 C
23 4.25 35 2 2 2 2 4 4 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 C
24 4.25 39 2 2 2 2 4 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 C
25 4.25 63 2 2 2 4 4 4 1 1 1 0 1 1 0 1 1 1 1 1 1 2 -1 C